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Abstract. This article presents the role of artificial neural networks in use of hy-
droabrassive suspensive jet cut process in syenite treatment. Three-ply layer per-
ceptron type network with an error backpropagation learning algorithm was ap-
plicd to describe this process. The anticle provides detailed description of neural
network. This neural network simulates the treatment process and predicts its ef-
ficiency due to given parameters. The results were confronted with the laboratory

results of complex studies on parameters of culting sycnite with a hydroabrasive
suspensive jet, whose pressure is reduced to 30 MPa.

1. Introduction

In the recent years, high pressure water-jet machining has been competing cffectively
with conventional methods of separation of materials. This is above all owing 1o s
universal nature as a result of wide-range possibilitics such as cutting complex shapes,
various materials or a possibility to conduct it in extreme conditions (1, 8] (hazard of
fire or an explosion, work under water to 6000 m, etc.).

The most scrious disadvantage of the so-far existing systems for cutting with a
high pressure hydroabrasive jet and working at pressures of 400 MPa, is the use of an
injector mixer to create the jet - due.to its small cfficiency, especially in the case of
very big differences of working media velocities [2). An climination of an injector
mixer and the use of the jet's circumferential motion [6] for mixing an initially created
hydroabrasive mixture dircctly under a high pressure can result in a radical change of

the situation. Similar machining effects are achicved even though the working pressure
has been lowered even by an order of magnitude.

2. Test stand, method and material

The test stand has been constructed on the basis of BORJET 01 prototypical machin-
ery. It is constructed the way that allows quick changes of hydraulic pipes, the mixing
manner, and water supply to carry out an initially formed hydroabrasive jet [5).
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BORJET 01 appliance has been built from two containers and four independent hy-
draulic branches (Fig. 1), which allow adjustment of the basic flow parameters [3].
Each branch consists of the following valves: a cut-off valve, a throttle valve, a non-
return valve and a manometer. An overflow valve performs secures BorjetOl from

damage made by to high pressure. It is set at the pressure of 30MPa.

——
Fig. 1. Hydraulic diagram of device BORJET 01.

urce of a high pressure. It is made on the ba-
It makes it possible to
*/min.

A hydraulic monitor P26 type is the so
sis elements from a plunger pump made by WOMA company.
obtain the maximum pressure of 75 MPa with the ratc of water flow of 75 dm

Syenite is coarse-grained igncous rock, similar in appearance and composition to

granite Fig. 2. Unlike granite, it contains very small quantity or even no quartz.
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Fig. 2. The image of the polished surface of syenite.

. Syenite is made mainly from feldspars, with mica, homnblende, and pyroxene. Varie-
ties are distinguished (according to the ferromagnesian minerals contained) as augite
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sycnite, homblende sycnite, mica syenite, and nepheline syenite.
tively rare rocks, being found mainly in a few arcas of the Unite
They are used as substitutes of granites as building stones.

Syenites arc compara-
d States and Germany.

3. Artificial Neural Networks

The artificial neuron is the basic unit of the anifici
case of ncuronal biological nets,
artificial ncuron answer the most
should always remember that ani
the relation to real nervous cells.
The artificial neuron makes up the kind of the converter about many cntrics and one
exit. One can distinguish two blocks of the processing of the information inside him.

First block of adding up in which input signals are increased by suitable coefficients
weights and added up then.

The topology of the net consisting from 5 neu
hidden layer and one outputs neuron (Fi
cutting process [4).
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g. 3) was accepted to modeling the waterjet
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Fig. 3. Neural Network schematic diagram.

Input data 1o the input layer included- pressure, abrasive flow rate, size and diameter
of nozzle and traverse speed. On the oulput layer cutting depth was given. In the hid-
den layer neuron has logistic activation function. This is an S-shaped (sigmoid) curve,
with output in the range (0,1). The most commonly used ncural network activation
function. Neurons in input and output layer have linear activation function.

The quantity of input and output ncurons was taken from the accessible results of
investigations directly. To learning process ware use 96 training cases that include both
input and target output values [7]. From process of training excluded 10% of chances,
which one used to verification of training process.

The net was learning with the algorithm of backward propagation, gelling stable re-
sults after 12000 iterations with learning rate of 0.03 and momentum 0.3 (Fig. 4).
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Fig. 4. Training error graph.

To research was utilized the commercial Statistica Neural Networks for Windows
application of the StatSoft Inc company.

4. Effects of Artificial Neural Networks Modelling

Fig. 5(a) depicts the role of pressure and advance in syenite cut. In relation to the re-
sults obtained due to modelling, the maximum compatibility was observed with the
advance at the maximum, whereas the biggest aberration (not beyond 15%) took place

at the minimum pressure.
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Fig. 5. Syenite cuting depth in a variable pressure and traverse speed conditions:
a) laboratory analysis, b) modeled with the artificial neural networks.

Fig. 6(a) depicts how the pressure and abrasive flow rate influence the cutting depth.
The compatibility with the results obtained in modelling (Fig. 6(b)), stays at the aver-
age of 1,56 mm. The maximum discrepancy, observed at the 28MPa pressure and 50

g/s abrasive flow rate, is at 4,67
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Fig. 6. Sycnite cutting depth in a variable pressure and traverse speed conditions:
a) laboratory analysis, b) modeled with the use of artificial neural networks.

The abrasive flow rate and the 50mm long nozzle diameter and their influence on
cut depth are shown in Fig. 7(a). The average discrepancy of those results confronted
with the results obtained in modelling (Fig. 7(b)) does not go beyond 2,5mm. The

maximum discrepancy, not going beyond 6mm, was observed with aabrasive flow rate
at minimum.
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Fig. 7. Syenite cutting depth with the use of 50mm long nozzle in a variable nozzle diameter and

abrasive flow rate conditions: a) laboratory analysis, b) modeled with the artificial neural net-
works.

Fig. 8(a) depicts how the abrasive flow rate and the 75mm long nozzle influence the
cut depth results. The confrontation of those results with those obtained due to model-
ling (Fig. 8(b)) brought big compatibility, reaching 5%. The maximum discrepancy
(not beyond 13%) was observed at the abrasive flow rate at minimum and the nozzle
diameter of 2,25mm.
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Fig. 8. Syenite cutting depth with the use of 75Smm long n
a abrasive flow rate conditions: a) laboratory analysis,
networks.

ozzle in a variable nozzle diameter and
b) modelled with the artificial neural

In Fig. 9(a) and Fig. 9(b) are shown the analogical relationships for 100mm long noz-
zle. Fig. 9. depict even more compatibility of real cut depth values with those obtained
due to modeling. Only with the nozzle diameter and the abrasive flow rate at minimum

the aberration goes for 10%.
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Fig. 9. Syenite cutting depth with the use of 100mm long nozzle in a variable nozzle diameter
and a abrasive flow rate conditions: a) laboratory analysis, b) modelled with the artificial neural

networks.

The overall comparison of lab and modeling results are shown in Fig. 10. Line ideal
(y=x) illustrates how a model ideally matches real values. Points represent all values
described in a report (values obtained with the use of ANN model)
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Fig. 10. Evaluation of matching Antifical Neural Network with measuring values.

Model to real values average discrepancy is 2,14mm (7,67%).

S. Summary

The artificial ncural networks use in the cut depth designating, give similar estimates in
every considered case. The divergences do not go beyond 8%. The remaining parame-
ters modcling results do not exceed 5%. In some cases, the discrepancy is at 10%, and
only one case resulted in 20% divergence. Standard discrepancy between modelled and
laboratory-values are included in the interval from 2,16 10 3,24mm.

In most cases, the variation character due to the artificial neural network modecling
was compatible with the results obtained in empirical way.

Making the neural network more complicated and choosing its parameters more
adequately will result in the model being more “well-fitted”.

Our next step is to use already trained artificial neural network to oplimize
hydroabrasive waterjet cutting parameters to maximize cutting depth.
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